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Abstract 

Background: In horned sheep breeds, breeding for polledness has been of interest for decades. The objective of 
this study was to improve prediction of the horned and polled phenotypes using horn scores classified as polled, 
scurs, knobs or horns. Derived phenotypes polled/non-polled (P/NP) and horned/non-horned (H/NH) were used to 
test four different strategies for prediction in 4001 purebred Merino sheep. These strategies include the use of single 
‘single nucleotide polymorphism’ (SNP) genotypes, multiple-SNP haplotypes, genome-wide and chromosome-wide 
genomic best linear unbiased prediction and information from imputed sequence variants from the region includ-
ing the RXFP2 gene. Low-density genotypes of these animals were imputed to the Illumina Ovine high-density (600k) 
chip and the 1.78-kb insertion polymorphism in RXFP2 was included in the imputation process to whole-genome 
sequence. We evaluated the mode of inheritance and validated models by a fivefold cross-validation and across- and 
between-family prediction.

Results: The most significant SNPs for prediction of P/NP and H/NH were OAR10_29546872.1 and OAR10_29458450, 
respectively, located on chromosome 10 close to the 1.78-kb insertion at 29.5 Mb. The mode of inheritance included 
an additive effect and a sex-dependent effect for dominance for P/NP and a sex-dependent additive and dominance 
effect for H/NH. Models with the highest prediction accuracies for H/NH used either single SNPs or 3-SNP haplotypes 
and included a polygenic effect estimated based on traditional pedigree relationships. Prediction accuracies for H/
NH were 0.323 for females and 0.725 for males. For predicting P/NP, the best models were the same as for H/NH but 
included a genomic relationship matrix with accuracies of 0.713 for females and 0.620 for males.

Conclusions: Our results show that prediction accuracy is high using a single SNP, but does not reach 1 since the 
causative mutation is not genotyped. Incomplete penetrance or allelic heterogeneity, which can influence expres-
sion of the phenotype, may explain why prediction accuracy did not approach 1 with any of the genetic models 
tested here. Nevertheless, a breeding program to eradicate horns from Merino sheep can be effective by selecting 
genotypes GG of SNP OAR10_29458450 or TT of SNP OAR10_29546872.1 since all sheep with these genotypes will be 
non-horned.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Breeding for polled animals is a long-standing issue in 
horned species such as cattle, sheep and goats [1–3] and 
analyzing its underlying genetic mechanism is interest-
ing from both a breeding perspective and evolutionary 
perspective. In natural populations of ruminants, the 
occurrence of horns serves two major purposes. First, 

they help an animal to defend itself from predators, and 
second, horns are important to determine dominance 
between males and gain access to females. For farm-
ers, the foremost reason to favour polled animals is that 
horned animals can pose a physical security risk to the 
farmer, but can also cause injury to other livestock, which 
results in downgrading of meat due to bruising. Breed-
ing practices can reduce or completely remove the occur-
rence of horned animals from the population.

In cattle, sheep and goats, several studies have 
attempted to describe the genetic mechanism that under-
lies the horned phenotype. In cattle, the most common 
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mutation for the polled phenotype is mapped to the 
proximal end of bovine chromosome 1, where different 
genomic variants are described as causative (insertion, 
duplication, and haplotypes) in different European breeds 
[4, 5]. Also overexpression of the FOXL2 and RXFP2 
transcripts in horn buds has been reported in cattle [4], 
which are genes known to affect or potentially affect horn 
formation in sheep and goats. In goats, an 11.7-kb dele-
tion located on chromosome 1 was identified as the caus-
ative mutation for the polled intersex syndrome (PIS), 
this deletion also affecting the transcription of two flank-
ing genes, FOXL2 and a non-coding RNA [6]. A quanti-
tative trait locus (QTL) for polledness in sheep has been 
mapped to chromosome OAR10 (OAR for Ovis aries) [7]. 
Wiedemar and Drögemüller [8] provided evidence that 
a 1.78-kb insertion in the 3′-untranslated region of the 
RXFP2 gene causes a polled phenotype in sheep. How-
ever, Lühken et al. [9] showed that this insertion does not 
completely explain the polled phenotype in various sheep 
breeds.

The mode of inheritance of polledness is complex 
since expression of this phenotype differs between sexes 
and because no single-locus model with complete pen-
etrance can explain the phenotypic variation both within 
and across breeds. Moreover, this issue is complicated by 
the existence of intermediate phenotypes such as knobs 
and scurs. A knob is a hard bony lump at the horn site 
which may have a horny cap, generally less than 2.5 cm 
long, and a scur is a horny growth, irregular in shape and 
smaller than a true horn [10]. In addition after castra-
tion of rams, the development of the horn is stopped or 
reduced [11], which makes accurate collection of horn 
scores more difficult.

Breeding strategies have been developed to increase 
polledness in several sheep breeding programs. Selec-
tion on polledness in both males and females (without 
the presence of genomic data) has been successful and 
resulted in polled breeds such as the polled Merino and 
Poll Dorset. With the availability of genomic data, it 
should be possible to optimize selection for polledness. 
A clear difference in allele frequency between polled and 
horned breeds is observed for single nucleotide polymor-
phisms (SNPs) that are closely linked to the 1.78-kb inser-
tion on OAR10 [12]. Currently, two such SNPs are used 
by the Australian sheep CRC to predict the phenotype i.e. 
OAR10_29546872.1 and OAR10_29389966_X.1. These 
SNPs were chosen from the Illumina Ovine 50k SNP 
chip, based on their significant association with polled 
phenotypes in Australian data from the CRC Information 
Nucleus Flock [13] and the Sheep Genomics Flock [14], 
respectively. SNPs that are located near the 1.78-kb inser-
tion in the RXFP2 gene are not present on the Illumina 
Ovine 50k chip or the OvineHD 600k chip, but four such 

SNPs have been included in the Illumina 15k Ovine array 
that was released in 2016.

Currently, prediction accuracy of the horned pheno-
type is not equal to 1, because the predictive SNP is not 
in full linkage disequilibrium (LD) with the 1.78-kb inser-
tion, or penetrance is incomplete, or because of epista-
sis, i.e. interaction between two or more genes. Recently, 
whole-genome sequence data of 726 European sheep 
from various breeds have become available. Thus, impu-
tation of the 1.78-kb insertion into the Merino population 
could provide a better predictor than the current SNPs 
used for prediction. To further investigate the genetic 
architecture of the polled and horned phenotypes, we 
compared models that fit the effects of all SNPs as ran-
dom effects with the same a priori distribution (genomic 
best linear unbiased prediction; GBLUP) and the effects 
of the most predictive SNPs as fixed effects, in order to 
estimate the variance explained by all SNPs genome wide, 
conditional on the genotypes of the most predictive SNPs 
in the RXFP2 region.

In this study, we evaluated various strategies for pre-
dicting horned or polled phenotypes in 4001 purebred 
Merino sheep, which include the use of single-SNP geno-
types, multiple-SNP haplotypes, genome-wide and chro-
mosome-wide GBLUP and information from structural 
variants in the RXFP2 region imputed to sequence level.

Methods
Population and phenotypic data
Data were extracted from two research datasets known as 
the Information Nucleus Flock (INF [13]) and the Sheep 
Genomics Flock (SGF [14]) and consisted of purebred 
Merino sheep that represented both polled Merino and 
Merino subtypes. For the analyses, we used 4001 sheep, 
which were born between 2007 and 2011 and distributed 
among eight flocks. These sheep originated from 182 
sires, which had between one and 51 offspring with dams 
that had on average 1.5 offspring present in the dataset.

The phenotypes polled, scurs, knobs or horns were 
recorded. Analysis was performed on two binomial traits 
that were classified as polled/non-polled (P/NP) and 
horned/non-horned (H/NH). Table  1 shows the distri-
bution of the polled and horned status between females 
and wethers (since all male sheep were castrated before 
horn scoring). Horn scoring was done around three to six 
months after marking. The frequency of horns was much 
lower in Merino sheep registered as ‘polled’. Sheep regis-
tered as ‘polled’ represented 40% of the data and included 
6% horned, 56% polled and 38% sheep with scurs or 
knobs. Merino sheep not registered as ‘polled’ (60% of 
the data) included 22% horned, 25% polled and 53% scurs 
or knobs.
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Genotypes
Of the 4001 animals, 3708 were genotyped with the 
OvineSNP50k BeadChip and the remaining 293 were 
genotyped with the Illumina-Ovine 12k SNP chip. Four 
hundred and forty-five animals were also genotyped with 
the Illumina Ovine HD (600k) (Illumina Inc., San Diego, 
CA, USA). Quality controls for each SNP chip were the 
same: SNP genotype records were removed if the call 
rate was less than 90%, if the GC (GenCal) score was less 
than 0.6, if deviation from Hardy–Weinberg equilibrium 
(χ2 > 600) was strong, and if the minor allele frequency 
(MAF) was lower than 0.01. In addition, only autosomal 
SNPs were used for imputation. Finally, 11,377, 48,559 
and 510,174 SNPs remained for the 12k, 50k and HD 
SNP chips, respectively. The 12k genotypes were imputed 
up to 50k using the Beagle software v3.2 [15] and the 50k 
genotypes were imputed up to HD using FImpute v2.2 
[16]. For both programs, default settings were used. In 
both imputation steps, all available genotyped animals 
from INF and the Sheep Genomics Flock were used, to 
increase imputation accuracy (22,684 animals for the 50k 
and 2450 for the HD chip). Accuracy of imputation was 
tested elsewhere [17, 18] and was generally high (on aver-
age a correlation of 0.98).

Statistical analyses
Four different methods were applied to predict the P/NP 
and H/NH phenotypes.

In method (1), we used a single-SNP genotype to pre-
dict the phenotype. To select the best SNP, we ran an 
association study for all SNPs on OAR10 by fitting each 
SNP as a covariate. Each single-SNP genotype was either 
fitted as a single predictor variable (base model), or 
was fitted jointly with a polygenic effect. This polygenic 
effect was assumed to be normally distributed with a 
covariance structure that was proportional to either the 
numeral relationships expected based on pedigree infor-
mation or a structure described by a genomic relation-
ship matrix (GRM). To account for the binomial nature 

of the response variables, we used logistic regression with 
the statistical package ASReml v4 [19].

In method (2), we used multiple SNPs to predict the 
phenotype. A haplotype was formed using the most sig-
nificant SNPs from the single-SNP GWAS using either 
three, five or ten SNPs. The three haplotypes covered a 
region of 5, 55 or 125 kb both up- and downstream of the 
1.78-kb insertion in the RXFP2 gene. Haplotypes were 
formed after phasing the genotyping data using EAGLE 
v1.0 [20]. Each animal has either no, one or two copies of 
the available haplotypes. For haplotypes with a frequency 
lower than 2%, we used one class of residual haplotypes. 
The number of unique haplotypes found for combina-
tions of three, five or ten SNPs, were equal to 3, 3, and 7, 
respectively. This limited number of haplotypes for each 
SNP combination reflects the high LD between the SNPs 
used. Haplotypes were fitted as random effects, jointly 
with a polygenic effect (either through a numerator rela-
tionship matrix or a GRM).

Method (3) applies a GBLUP analysis using a GRM [21] 
based on either all SNPs from the HD chip or only the 
SNPs located on OAR10. In addition, a dominance rela-
tionship matrix was added to the model [22] based on 
these same sets of SNPs using the GCTA package [23]. 
The statistical software package MTG2 v2.06 [24] was 
used to predict additive genetic and dominance effects. 
From the genomic estimated breeding values (GEBV) 
and dominance genetic values of the animals in the refer-
ence set, effects of SNPs were back-solved based on their 
genotypes, and these SNP solutions were used to esti-
mate the breeding values of the validation animals. Addi-
tive and dominance effects were summed across all SNPs 
to obtain the predicted phenotype.

In method (4), we tried to identify the 1.78-kb inser-
tion described by Wiedemar and Drögemüller [8] based 
on whole-genome sequence data from 122 Merino sheep 
sequenced by the SheepCRC project and we imputed 
this structural variant in the studied population. Whole-
genome sequence fastq reads were quality-controlled 
and aligned with BWA mem as described in Daetwy-
ler et  al. [25]. The reference whole-genome sequence in 
sheep (OAR3.1) was obtained from a polled Texel animal 
that carries the 1.78-kb insertion. To detect this vari-
ant that predicts horned animals, we used two software 
programs that are suitable for detecting large deletions, 
i.e. Pindel v0.2.5b9 [26] and Breakdancer v1.1.2 [27]. We 
ran both programs using the bam files from each of the 
122 sequenced Merino sheep. These 122 animals did not 
have phenotype records and therefore did not overlap 
with the 4001 Merinos used in this study although they 
were related to them. The Pindel package uses split-read 
approaches to identify large deletions. Breakdancer uses 
discordant paired reads and incorporates the coverage of 

Table 1 Number of  observed phenotypes for  male 
and female Merinos

For the derived phenotype horned/non-horned (H/NH), horned animals are 
contrasted with animals with horns scored as ‘polled’, ‘knobs’, and ‘scurs’ and for 
the derived phenotype polled/non-polled (P/NP), polled animals are contrasted 
with animals with horns scored as ‘horned’, ‘knobs’, and ‘scurs’

Females Males 
(wethers)

Polled 1123 511

Knobs + scurs 1237 561

Horned 88 481



Page 4 of 11Duijvesteijn et al. Genet Sel Evol  (2018) 50:28 

the reads and the size of the region defined by the dis-
cordant pairs into a confidence score. Both programs 
were run with default settings to call structural vari-
ants. Consensus between Pindel and Breakdancer was 
required to call the 1.78-kb insertion reported by Wiede-
mar and Drögemüller [8].

Pindel can detect whether an individual carries no, one 
or two insertions, while Breakdancer only detects the 
presence of the insertion. Seventy-four animals, which 
were concordant between Breakdancer and Pindel, were 
used for imputing the 1.78-kb insertion in the population 
of 4001 Merino sheep using EAGLE v1.0 for phasing [20] 
and Minimac3 [28] for imputation. Forty-seven animals 
were homozygous for the insertion, 10 were heterozygous 
and 17 were homozygous for absence of the insertion.

Mode of inheritance
We compared various models to investigate the mode of 
inheritance (effect of dominance and sex) of the polled 
and horned phenotypes fitting a single SNP (fitted as ran-
dom effect):

where y is a vector of length N (N = 4001) with pheno-
typic observations for all animals, µ is the intercept, Z is 
the incidence matrix relating observations to an individu-
als’ polygenic effects, u is the vector of polygenic breed-
ing values [ N

(

0,Aσ
2
A

)

 , �i is a vector of length N with 
genotypes for SNP i coded as 0, 1 or 2 representing the 
three classes of genotypes, αi is the random allele sub-
stitution effect at SNP i , for which the most significant 
SNP from the GWAS was used and e is a vector of residu-
als. In Model 2, a dominance effect was fitted where �i is 
a vector of length N with heterozygous animals at SNP 
i coded as 1 and homozygous animals as 0, and δi being 
the random dominance effect at SNP i . Model 1 was the 
null model, in which the SNP was fitted as an additive 
effect. Model 2 included both an additive and dominance 
effect for the SNP. An interaction term with sex (wether 
or female) was included in Models 3, 4 and 5 for the addi-
tive, or dominance, or both effects, respectively.

Models were compared based on Akaike’s informa-
tion criterion (AIC [29]). We compared the difference in 
AIC value (ΔAIC) between models. Model 1 was the null 
model: fitting an additive effect only. The more the AIC 

(1)y = 1µ+ Zu +�iαi + e,

(2)y = 1µ+ Zu +�iαi +�iδi + e,

(3)y = 1µ+ Zu + sex
∗
�iαi + e,

(4)y = 1µ+ Zu +�iαi + sex
∗
�iδi + e,

(5)y = 1µ+ Zu + sex
∗
�iαi + sex

∗
�iδi + e,

is negative, the better is the model fit. The model, which 
had the best fit (i.e. the lowest AIC), was used for further 
analyses. The models described here (1–5) did not allow 
for incomplete penetrance.

Validation
A fivefold cross-validation was repeated five times to 
compare prediction accuracy of the five models. Pre-
diction accuracy was defined as the Pearson correlation 
between the predicted phenotype in the test set and the 
binomial traits P/NP or H/NH. The mean of accuracy 
and the standard deviation across folds are reported.

P/NP and H/NH may not represent fully monogenic 
traits and we wanted to further investigate the inher-
itance pattern of these traits. Therefore, we applied 
another validation strategy that contrasted the use of 
family information versus no family information in pre-
dicting phenotype. The dataset was split by using two 
different approaches. First, within-family prediction was 
estimated by using phenotypic data from approximately 
half of the animals in each half-sib family to predict the 
phenotypes of the other half of the animals (intra-family 
comparison). Second, across-family prediction was esti-
mated by using phenotypic data from approximately half 
of the families to predict the phenotypes of the animals in 
the other half of the families (inter-family comparison). 
Sires with more than 13 offspring were selected for fam-
ily validation. One hundred and thirty-eight sire families 
and 3671 sheep were used for this validation. The mean 
of accuracy (Pearson’s correlation) and standard error 
across a fivefold validation are reported.

Results
The local association study for P/NP and H/NH clearly 
confirmed that the RXFP2 region is significantly asso-
ciated with the phenotypes and identified highly sig-
nificant SNPs at about 29.5 Mb on OAR10 (Fig. 1). The 
most significant SNP for polled was OAR10_29546872.1 
(− log10(p-value) = 126), which differed from the most 
significant SNP for horned, i.e. OAR10_29458450 
(− log10(p-value) = 51), although both SNPs are close to 
each other (0.5 Mb apart, located upstream of the inser-
tion) and in high LD  (r2 = 0.985). Both SNPs always 
ranked as number 1 or 2 in terms of significance level, and 
were used to test the accuracy of prediction for the single 
SNP analyses. The region around the 1.78-kb insertion 
also contained other significantly associated SNPs, e.g. in 
the region between 29 and 30 Mb, the average − log10(p-
value) across all 228 SNPs was equal to 24 for P/NP and 
11 for H/NH. Note that, in general, p-values less signifi-
cant for the H/NH phenotype because the frequency of 
horned phenotypes in the dataset was low, especially in 
females (Table 1), which resulted in less power to detect 
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SNP effects. Both SNPs were present on the Illumina 
Ovine HD chip and SNP OAR10_29546872.1 was also 
present on the OvineSNP50k chip.

In Tables 2 and 3, the proportions of genotypes for the 
most significant SNP for phenotypes P/NP and H/NH 
are provided for each sex. All males and females, except 
one that had genotype 2 for SNP OAR10_29458450, were 
non-horned (Table 3) although not all are polled (84% of 
females and 78% of males were polled). The probability 
of each genotype to carry a particular phenotype was 
derived simply from the mean of the binary trait for that 
class of genotypes. The probability of an animal with gen-
otype 0 to be horned is less than 1, and this probability is 
especially low in females (0.07) compared to males (0.67).

Table 4 shows the results for the mode of inheritance 
for P/NP and H/NH. For P/NP, the best model included 
an additive and sex-dependent effect for dominance. For 

H/NH, the best model included sex-dependent additive 
and dominance effects (i.e. a sex-by-gene interaction). 
Figure 2 shows the degree of dominance per sex for P/NP 
and H/NH. H/NH showed complete dominance in males, 
whereas P/NP showed incomplete dominance in males 
and females.

Prediction
Mean prediction accuracies and standard deviations 
across the five replicates and fivefold validation are 
in Table  5 for H/NH and in Table  6 for P/NP. Predic-
tion using single-SNP models without additional 
family information (via either pedigree or genomic 
relationships) resulted in accuracies for P/NP equal 
to 0.547 and 0.642, in males and females, respectively. 
For H/NH, the accuracy was much lower in females 
(0.155) and higher in males (0.714). Adding pedigree 

Fig. 1 Local genome-wide association plot for the traits a polled/non-polled and b horned/non-horned of OAR10. The grey rectangle indicates the 
location of the RXFP2 gene (29.4–29.5 Mb). The most significant SNP is indicated in red with its name

Table 2 Proportion of  SNP OAR10_29546872.1 alleles 
per  sex for  the  polled phenotype and  probability 
of animals being polled

a Based on the proportion of polled animals in each genotype class

Sex Genotype Polled (0) Non-polled (1) Probability 
of being 
 polleda

Female 0 (AA) 174 1058 0.14

1 (AT) 811 353 0.77

2 (TT) 138 25 0.85

Male 0 (AA) 29 675 0.04

1 (AT) 385 340 0.53

2 (TT) 97 27 0.78

Table 3 Proportion of  SNP OAR10_29458450 alleles 
per  sex for  the  horned phenotype and  probability 
of animals being horned

a Based on the proportion of horned animals in each genotype class

Sex Genotype Non-horned (0) Horned (1) Probability 
of being 
 horneda

Female 0 (AA) 1149 81 0.07

1 (AG) 1046 6 0.01

2 (GG) 165 1 0.01

Male 0 (AA) 228 472 0.67

1 (AG) 719 9 0.01

2 (GG) 125 0 0.00
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relationships in the model led to a substantial increase 
in prediction accuracy for H/NH in females (0.323), 
whereas for P/NP, the increase was small i.e. 0.582 and 
0.671 in males and females, respectively. Replacing 
the numerator matrix with a GRM increased accura-
cies mainly for P/NP, i.e. 0.620 in males and 0.713 in 
females. A similar increase was not observed for H/NH 

(accuracies of 0.723 and 0.303 in males and females, 
respectively).

The methods using haplotypes from multiple SNPs 
(three, five or ten SNPs) did not increase prediction accu-
racies substantially, compared to single-SNP prediction 
models. For example, prediction accuracies for P/NP in 
males using three, five or ten SNP-haplotypes and using 
a GRM were equal to 0.714, 0.716 and 0.700, respectively, 
compared to 0.713 when using a single-SNP haplotype. 
Creating a haplotype from more than five SNPs even 
decreased prediction accuracy (not significant).

Method (3) used the sum of two GRM (matrix G for 
additive and matrix D for dominance) based on either all 
SNPs across all chromosomes or SNPs on OAR10 only. 
The prediction accuracies using SNPs on OAR10 only 
were similar to those obtained by fitting a single SNP 
for P/NP. For example, prediction accuracy for P/NP in 
females was equal to 0.640 when the G + D model based 
on SNPs of OAR10 was used compared to 0.642 when 
the single SNP model was used. The accuracies obtained 
with the G + D model were lower for H/NH in males 
compared to those obtained with single-SNP or multiple-
SNP haplotypes (0.597 for OAR10 vs. 0.714 using single-
SNP haplotype). In general, the G + D model based on 
all chromosomes resulted in lower prediction accuracies 
than fitting only the SNPs on OAR10.

Table 4 Testing various modes of  inheritance for  polled/
non-polled (P/NP) and  horned/non-horned (H/NH) 
at  the  single SNP locus based on  Akaike’s information 
criterion (AIC)

a Model numbers refer to the models described in the Methods section, 
paragraph “Mode of inheritance”

Modela P/NP H/NH

AIC ΔAIC AIC ΔAIC

(1) Additive − 3387 0 − 5070 0

(2) Additive + dominance − 3580 193 − 5168 99

(3) Sex-dependent additive + domi-
nance

− 3689 302 − 5162 92

(4) Additive + sex-dependent domi-
nance

− 3759 371 − 6871 1802

(5) Sex-dependent additive + sex-
dependent dominance

− 3752 365 − 7236 2166

Fig. 2 Degree of dominance per sex. a Degree of dominance for polled/non-polled. Non-polled is coded as 1 and polled as 0. The dotted line 
indicates an additive model, where the solid line includes dominance (best fitted model). The lines for females and males are blue and red, 
respectively. b Degree of dominance for horned/non-horned. Horned is coded as 1 and non-horned as 0. The dotted line indicates an additive 
model, where the solid line includes dominance (best fitted model). The lines and males are blue and red, respectively
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Method (54) used the imputed insertion for prediction. 
This insertion was fitted as a single SNP (coded as 0, 1 
or 2) and modeled according to the model with the best 
mode of inheritance [Table  4, Model (4) for P/NP and 
Model (5) for H/NH)]. This method gave a low prediction 

accuracy for P/NP, i.e. 0.571 versus 0.671 in females and 
0.483 versus 0.584 in males. All models included a poly-
genic effect based on pedigree relationships. We obtained 
similar results for H/NH. When using both the 1.78-kb 
insertion and the single-SNP, prediction accuracies were 
very similar to using only the best single SNP for P/NP 
and H/NH.

The results for across- and within-family prediction 
are in Table  7. The model including a single-SNP gave 
the highest correlations compared to using BLUP (by fit-
ting pedigree only) both for across- and within-family 
prediction. No differences between the correlations for 
across- and within-family prediction were observed with 
the A + D model (excluding the prediction accuracy for 
horned females). Although prediction accuracies in 
across- and within-family comparisons were quite simi-
lar, standard errors (SE) on the estimated correlations 
were higher for the across-family predictions. For exam-
ple, within-family prediction for females for P/NP using 
pedigree information had a SE of only 0.013 compared 
to 0.10 for across-family prediction. Fitting a single SNP 
greatly reduced the SE of the correlation to values of 0.01 
and 0.004 for across- and within-family prediction.

Discussion
The most significant SNPs for P/NP and H/NH, i.e. 
OAR10_29546872.1: 29512572 and OAR10_29458450: 
29458450, respectively, were very close to the 1.78-
kb insertion in the RXFP2 gene (at position 29456047 
through 29457881 on OAR10). OAR10_29546872.1 has 
been used by the Australian Sheep CRC since 2012 as the 
main predictive SNP for the polled phenotype in Merino 
sheep (J. van der Werf, personal communication), with 
OAR10_29389966_X.1 (reported by Dominik et al. [12]) 
as a second predictive genotype (in case of a failed gen-
otype with the first SNP). This OAR10_29389966_X.1 
SNP was also in the top 10 most significant SNPs in the 
GWAS of our study. The SNP reported by Johnston et al. 
[7] (OAR10_29448537.1: 29415140) was not included in 
the top 100 SNPs of our GWAS. SNP OAR10_29448537.1 
is located upstream and SNP OAR10_29546872.1 down-
stream of the 1.78-kb insertion. In our population, SNP 
OAR10_29448537.1 had a higher MAF (0.46) than the 
other two SNPs i.e. 0.30 and 0.29 for OAR10_29458450 
and OAR10_29546872.1, respectively. The difference 
in significance between the SNP reported by Johnston 
et al. [7] and the most significant SNP in our study is also 
reflected in the squared correlation  r2 of 0.19 between 
OAR10_29448537.1 and OAR10_29546872.1. The differ-
ence in allele frequency and LD patterns can result in the 
selection of other SNPs for genomic prediction between 
studies in different populations.

Table 5 Prediction accuracies for  the  horned/non-horned 
phenotype with standard errors (SE) of the mean

a Models fitting a single SNP alone or with a polygenic effect based on pedigree 
relationships ( A ), or genomic relationships (GRM). Models using three, five, or 
ten SNP haplotypes are abbreviated with ‘Hap’ followed by the number of SNPs 
used to form the haplotype. Models using GRM for prediction are abbreviated 
with ‘GRM’

Modela Ped Average SE

F M F M

Single SNP – 0.155 0.714 0.006 0.006

Single SNP A 0.323 0.721 0.017 0.006

Single SNP GRM 0.303 0.723 0.015 0.006

Hap3 A 0.323 0.725 0.016 0.006

Hap5 A 0.324 0.723 0.016 0.005

Hap10 A 0.315 0.687 0.016 0.006

Hap3 GRM 0.270 0.630 0.011 0.007

Hap5 GRM 0.275 0.581 0.012 0.012

Hap10 GRM 0.293 0.691 0.014 0.006

GRM OAR10 GRM 0.216 0.597 0.006 0.006

GRM GRM 0.248 0.534 0.010 0.008

Insertion A 0.296 0.573 0.013 0.008

Insertion + SNP A 0.325 0.723 0.016 0.005

Table 6 Prediction accuracies for  the  polled/non-polled 
phenotype with standard errors (SE) of the mean

a Models fitting a single SNP alone or with a polygenic effect based on pedigree 
relationships ( A ), or genomic relationships (GRM). Models using three, five, or 
ten SNP haplotypes are abbreviated with ‘Hap’ followed by the number of SNPs 
used to form the haplotype. Models using GRM for prediction are abbreviated 
with ‘GRM’

Methoda Ped Average SE

F M F M

Single SNP – 0.642 0.574 0.007 0.006

Single SNP A 0.671 0.582 0.006 0.006

Single SNP GRM 0.713 0.620 0.004 0.005

Hap3 A 0.671 0.583 0.005 0.006

Hap5 A 0.676 0.582 0.006 0.006

Hap10 A 0.549 0.444 0.007 0.008

Hap3 GRM 0.714 0.621 0.004 0.005

Hap5 GRM 0.716 0.619 0.004 0.005

Hap10 GRM 0.700 0.604 0.004 0.005

GRM OAR10 GRM 0.640 0.578 0.003 0.005

GRM GRM 0.624 0.533 0.004 0.006

Insertion A 0.571 0.483 0.005 0.006

Insertion + SNP A 0.671 0.582 0.006 0.006
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Mode of inheritance
In the literature, different modes of inheritance have 
been discussed for the polled phenotype in sheep. Dif-
ferences in the effects of horned and polled alleles for 
males and females were already suggested by Wood in 
the 1900s [30] and Dolling in the 1960s specifically for 
Merino sheep [31–33]. Johnston et  al. [7] suggested 
that the mode of inheritance of horns was dominant in 
males and additive in females, but could not rule out 
the possibility that other genetic regions may explain 
the remaining polygenic variation in horn phenotype. 
Dominik et  al. [12] suggested a dominant maternal 
imprinted effect both in males and females. Recently, 
Lühken et al. [9] discussed the inheritance of the inser-
tion at the 3′UTR of RXFP2 in many breeds with a 
variety of horn status. Inconsistent results with the 
insertion are observed mainly for sheep breeds with 
sex-dependent or variable horn status. In wild Bighorn 
sheep, a significant sex * QTL interaction was observed 
for two horn traits that are co-located on OAR10 [34]. 
In Merino sheep, horn status is sex-dependent, and the 
occurrence of scurs and knobs is observed especially in 
females.

Our results indicate that the degree of dominance dif-
fers between P/NP and H/NH (Fig. 2). Figure 2 shows 
the predicted phenotype given its genotype class by 
including dominance or assuming additivity only. H/
NH showed complete dominance in males whereas 
P/NP showed incomplete dominance in males and 
females. The effect of sex on P/NP is not large (both 
show incomplete dominance), on the contrary, Merino 
females hardly have horns which makes prediction for 
H/NH in females difficult (Table  5 and Fig.  2). Our 
findings confirm the importance of dominance in both 
males and females, but do not confirm any maternal 
imprinted effect (results not shown). This is the first 

study to show statistical evidence for sex-dependent 
differences in the additive and dominance effects for 
horned and polled phenotypes.

Prediction
In this section, we discuss three different observations 
from our study. First, we discuss the importance of a 
model that explicitly includes SNPs with large effects on 
the trait, then the genetic architecture of the polled and 
horned phenotype and the influence of genes outside the 
RXFP2 region, and finally the importance of identifying 
the 1.78-kb insertion for an accurate prediction.

The four methods used to predict polled and horned 
phenotypes were evaluated based on the correlation 
between phenotype and predicted phenotype from a five-
fold validation. The method with the lowest correlation 
was GBLUP and the method with the highest correlation 
was a single-SNP model or a model that fits a haplotype 
with three highly significant SNPs. When the single-SNP 
was not explicitly fitted such as in the GBLUP model, 
prediction accuracy decreased (for H/NH in males, 
and P/NP in males and females), indicating the impor-
tance of explicitly fitting highly significant SNPs close 
to the known causative mutation. Applying the GBLUP 
method, which shrinks all SNP effects equally, will result 
in a lower prediction accuracy in the presence of a large 
QTL. Similar results were described by Lee et  al. [35] 
who analyzed coat colour in mice, which is affected by a 
number of known causal loci with large effects. Similar 
results were also observed in dairy cattle for the DGAT1 
gene that has a large effect on milk fat percentage. Bayes-
ian methods, which select fewer relevant SNPs compared 
to GBLUP and allow these to explain more variation, out-
performed GBLUP in prediction accuracy [36, 37]. Also a 
study in pigs in which a large QTL for number of teats in 
pigs was explicitly fitted, resulted in increased accuracy 
of prediction [38].

For the prediction of both horned and polled pheno-
types, including a polygenic effect in the model achieved 
better prediction accuracies compared to using only 
a single SNP, with little difference between modeling 
the polygenic covariance structure via pedigree-based 
relationships versus genomic relationships. The vari-
ance explained by models including a polygenic effect 
was larger than that explained by models without pedi-
gree information. For the horned trait, variance compo-
nents of the model indicated that 70% of the phenotypic 
variance was explained by a single SNP, and this figure 
increased to 78% when pedigree was also included. Herit-
ability estimated for H/NH on the underlying scale (using 
the numerator relationship matrix) without fitting the 
significant SNP was equal to 0.40 and dropped to 0.06 
when fitting the significant SNP as a fixed effect (i.e. it 

Table 7 Prediction accuracies  (SEa) per  sex for  horned/
non-horned (H/NH) and  polled/non-polled (P/NP) 
for across- and within-family structure

a Standard error of the mean over five replicates
b F = females, M = males
c POL = only a polygenic effect fitted via pedigree
d A + D = model with a single SNP, fitting additive + dominance effect and a 
pedigree

Sexb Across-family Within-family

POLc A + Dd POL A + D

P/NP F 0.34 (0.10) 0.65 (0.013) 0.49 (0.013) 0.66 (0.004)

M 0.36 (0.09) 0.60 (0.010) 0.40 (0.007) 0.57 (0.003)

H/NH F 0.23 (0.13) 0.17 (0.007) 0.33 (0.07) 0.32 (0.005)

M 0.36 (0.11) 0.72 (0.007) 0.51 (0.06) 0.72 (0.003)
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was excluded from the genetic variance). For the polled 
trait, 51% of the phenotypic variance was explained by 
a single SNP and 70% of the phenotypic variance when 
pedigree was also included. Heritability estimated for P/
NP on the underlying scale (using the numerator rela-
tionship matrix) without fitting the significant SNP was 
equal to 0.60 and dropped to 0.13 when fitting the sig-
nificant SNP as a fixed effect. These results indicate that 
the single SNP does not explain all the genetic variance. 
However, prediction of non-horned sheep is 100% accu-
rate in males when selecting for the GG genotype of SNP 
OAR10_29458450, and almost perfect in females (one 
GG genotyped female was horned). Although selection 
against horns can be successful, other forms of horns will 
still exist such as knobs and scurs.

The potential influence of other genes outside the 
RXFP2 region was further investigated via within- and 
across-family validation. Polygenic traits such as milk 
production or growth tend to show a pattern in which 
across-family prediction is lower than within-family pre-
diction. Assuming that non-genetic effects (e.g. common 
environment) are correctly taken into account and that 
other effects due to population structure such as genetic 
groups are accounted for, within-family prediction uses 
both linkage and LD information for prediction, whereas 
across-family prediction can only depend on LD [35]. In 
our study, differences between across- and within-family 
predictions were small (Table 7), which clearly shows that 
the effect of other genes, captured by the polygenic effect, 
was not strong for the polled and horned phenotypes 
[35]. Alternatively, to show the potential influence of 
other genes, the significant SNP (OAR10_29546872.1 or 
OAR10_29458450) can be fitted as a fixed effect and then 
the GWAS is run across all remaining SNPs. None of the 
GWA plots showed clear and consistent significant asso-
ciations (see Additional file 1: Figure S1). In addition, we 
detected no other significant regions outside the RXFP2 
region when sheep with knobs and scurs were tested 
against horned sheep in the GWAS (see Additional file 2: 
Figure S2), which indicates that the trait is not polygenic 
and the majority of the variation is determined by the 
RXFP2 region.

In this study, imputation of the 1.78-kb insertion 
within the RXFP2 gene [8] did not result in better pre-
diction accuracies. The most likely reason for the lower 
prediction accuracy is that none of the animals in this 
study were sequenced and, thus the insertion was not 
detected directly on the animal itself but rather obtained 
through imputation. The accuracy of imputation could 
have been a limiting factor for not reaching a better pre-
diction accuracy. Estimated LD between the insertion 
and the most significant SNP (OAR10_29546872.1) was 
estimated at 0.46 for the imputed dataset (N = 4001) and 

0.49 for the sequenced dataset (N = 72). Even lower LD 
estimates of 0.194 were found between the insertion and 
SNP OAR10_29511510.1 (position 29,476,678) for sheep 
breeds with a variable horn status [9]. Estimates of LD for 
polled or horned breeds were much higher (0.635). Low 
LD between SNPs up- and downstream of the 1.78-kb 
insertion will result in lower imputation accuracy for the 
insertion. However, even if the insertion is correctly iden-
tified, horned and polled phenotypes are expected not to 
be 100% accurately predicted. Incomplete penetrance, 
allelic heterogeneity or other (environmental) interac-
tions could cause variability in the horn status within 
genotype.

Implications
Our findings suggest that prediction of polled and 
horned phenotypes based on DNA polymorphisms is 
not 100% accurate. However, prediction of horn status 
based on predictive single SNPs provides close to maxi-
mum accuracy and can be used succesfully in sheep 
breeding programs to reduce the frequency of horned 
phenotypes. Implementation into a breeding program 
including a cost–benefit analysis is discussed (Granleese 
T, Clark SA, Duijvesteijn N, Bradley PE and van der Werf 
JHJ: Strategies and cost–benefit of selecting for a polled 
sheep nucleus using DNA testing, submitted). An impor-
tant factor for a successful breeding program is to ensure 
accurate phenotype recording. Although the trait seems 
simple, classifying between horns, scurs, knobs or polled 
is still a challenge especially with the interference due 
to castration of males. Clear guidelines for such record-
ing are necessary to improve the overall prediction of 
horned and polled phenotypes. Recently, a new SNP chip 
(15k) was developed, which includes SNPs present in the 
1.78-kb insertion. Currently, the number of phenotypes 
and genotypes is not sufficient to evaluate the accuracy 
of prediction based on these SNPs, although the expec-
tation is that these SNPs could increase the prediction 
accuracy even more.

Conclusions
The mode of inheritance for polled and horned pheno-
types is sex-dependent. Horned vs. non-horned and 
polled vs. non-polled in males both show an additive and 
dominance effect, whereas non-horned is dominant. Pre-
diction of horned females is difficult since this phenotype 
is rare and no genetic model is clearly favourable, while 
polled vs. non-polled shows a similar mode of inherit-
ance in females and males (additive + dominance, and 
polled is dominant).

Prediction of polled and horned phenotypes when 
using a single SNP gives an accuracy of ~ 0.7. Predic-
tion accuracy is not 100% since the causative mutation 
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was not genotyped, and the model of inheritance is 
not completely known yet, e.g. incomplete penetrance, 
allelic heterogeneity or other (environmental) interac-
tions can cause variability of prediction within geno-
types. Neither the models including more SNPs by 
forming haplotypes, nor those fitting a GRM and 
dominance matrix based on all SNPs (whole genome 
and OAR10 only) resulted in higher prediction accura-
cies. Addition of pedigree information via a numera-
tor relationship matrix or a GRM to a single SNP 
model did result in an increased accuracy, but only in 
a  slight  one. However, interaction with or effects of 
genes outside the RFXP2 region were not detected. 
Nevertheless, a breeding program aimed at eredicat-
ing horns from Merino sheep by selection on geno-
type GG of SNP OAR10_29458450 or genotype TT of 
SNP OAR10_29546872.1 (all non-horned) could be 
successful.
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